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Abstract. A dynamical model of fission of hot charged metallic clusters on the basis of Langevin equations
is proposed, where the viscosity is taken from experimental data for the bulk. As an example the process
Na2+

18 → Na+
9 + Na+

9 is considered. Decay rates calculated with the full Langevin equations are compared
with those of the overdamped limit, which turns out to be a good approximation. Comparison is also
made with the Bohr-Wheeler rate, the quasi-stationary Kramers rate, and a rate derived from a mean
first passage time approach. A fission delay is predicted which is two orders of magnitude larger than in
a calculation without dissipation. This is an order of magnitude larger than the corresponding effect in
nuclear fission, where in contrast to the cluster case the fission delay due to friction is well established
experimentally. A comparison is also made with the competing decay channels Na2+

18 → Na+
15 + Na+

3 ,
Na2+

18 → Na+
17 + Na+, and Na2+

18 → Na2+
17 + Na, which are treated as evaporation processes.

PACS. 36.40.Qv Stability and fragmentation of clusters

1 Introduction

The viscosity of nuclear matter considerably slows down
the fission process of hot nuclei compared to the case with-
out dissipation, see e.g. the review articles [1,2]. The main
experimental indicators for slow nuclear fission are the
pre-scission neutron and γ multiplicities, i.e. the number
of neutrons and giant dipole γ quanta, respectively, emit-
ted per fission event prior to scission. No such experimen-
tal indicator for a delayed fission of metallic clusters exists
up to now. Mass symmetric fission of metallic clusters has
not even been identified experimentally; metallic clusters
preferentially undergo asymmetric fission.

The different behaviour of nuclei and clusters can be
understood on the basis of a liquid drop model which has
been not only established for nuclei but also for clusters,
e.g. [3]. Fission is controlled by the competition between
the repulsive Coulomb interaction and the surface ten-
sion. Whereas nuclei are homogeneously charged, metallic
clusters are surface charged. Calculating the driving forces
with respect to the asymmetry degree of freedom in the
liquid drop model explains why heavy nuclei prefer sym-
metric and metallic clusters strongly asymmetric fission.
For a detailed discussion of this point see references [4,
5]. Experimentally it is established that the preferred de-
cay channel of multiply charged alkali metal clusters be-
low the so-called appearance size is a light singly charged
(often a trimer) particle and the corresponding multi-
ply charged heavy residual cluster, and not symmetric
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fragmentation. This might be interpreted as very asym-
metric fission. However, the process looks more like the
evaporation of a light charged particle, which in nuclear
physics would correspond to the evaporation of a proton
or an α particle. Therefore it has been proposed in ref-
erences [6–8] to treat the decay of hot clusters, not only
for the emitted neutral monomers but also for the emitted
light charged particles, on the basis of the Weisskopf [9]
evaporation model appropriately modified for the appli-
cation to clusters. By equating the decay rates for neu-
tral monomer and charged particle emission the critical
(appearance) sizes of alkali and alkaline earth metals pro-
duced at high temperatures have been calculated and com-
pared with experimental data [10].

For a collective motion like fission into symmetric frag-
ments an evaporation model is not adequate. One still
may try a statistical model like that of Bohr and Wheeler
[11] which was developed for nuclear fission. If, however,
dynamics (not only the driving force but also viscosity)
plays a role in the collective fission degree of freedom
one might apply the quasi-stationary Kramers model [12]
(based on a stationary solution of a Fokker-Planck equa-
tion) or alternatively, in order to have a completely dy-
namical description, one might solve the corresponding
Langevin equations.

Symmetric fission of metallic clusters has been calcu-
lated on the basis of microscopic models, e.g. in references
[13,14]. But only in reference [14], where the fission process
Na2+

18 → Na+
9 + Na+

9 is treated, also the competing chan-
nel Na2+

18 → Na+
15 + Na+

3 is investigated. It is found in
this particular case that the barrier height for symmetric
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fission (note that the fission products Na+
9 have closed

shells) is comparable with the barrier height for the emis-
sion of a charged trimer. For energetic reasons the fission
process, therefore, might well compete with the evapora-
tion process. However, if viscosity plays a role the fission
process should be suppressed as in the nuclear case. In ref-
erence [15] we have estimated the effect of viscosity on the
fission rates of clusters by applying the quasi-stationary
Kramers limit using the potential of reference [14] and
the measured viscosity coefficient of the bulk [16]. It was
predicted that the fission delay of clusters due to viscosity
should be even an order of magnitude larger than the cor-
responding effect in the fission of hot nuclei. For a possible
experiment on the decay of Na2+

18 this would have as conse-
quence that symmetric fission is expected to be suppressed
and the emission of charged trimers should dominate al-
though the barrier heights of both processes are of about
equal size.

In the present paper we improve the previous esti-
mates by solving Langevin equations based on the one-
dimensional (in terms of the fission coordinate q) poten-
tial of reference [14] for a dynamical calculation of the
fission rate as a function of time, thus going beyond the
quasi-stationary limit of Kramers. A treatment of fission
of clusters with Langevin equations was also proposed by
Rubchenya [17]. We compare the results obtained with the
full Langevin equations with those of a Langevin equation
in the overdamped limit. We also make a comparison with
rates obtained with the Bohr-Wheeler formula and the
quasi-stationary Kramers limits, and with a fission rate
derived from a mean first passage time approach.

2 The Langevin model

In Figure 1 we show the scenario for the fission process.
Langevin trajectories start at the position of the ground
state qgs of the fission potential V (q), which is shown as a
function of the fission coordinate q defined as the distance
between the centers of mass between the fission fragments.
The potential is normalised to V (qgs) = 0. The initial
momenta p are sampled from a thermal distribution with
an initial temperature determined by the initial excitation
energy of the system, E∗i = Etot = (3n − 6)kBT . The
total energy is subdivided into a kinetic energy Ekin, the
potential energy V (q), and the intrinsic excitation energy
E∗, Etot = Ekin + V (q) + E∗. The trajectories run over
the saddle point with a barrier height Bf at qsd and leave
the potential at the scission point qsc. The trajectories
can also be reflected from the inner well before leaving
the potential (see Fig. 3 for an example).

The trajectories are determined by solving the system
of Langevin equations which in order to be suitable for
numerical simulation are given in discretized form

qn+1 = qn +
( p
M

)
n
τ

pn+1 = pn−

(
dV (q)

dq
+η

p

M

)
n

τ+
√

(ηT )nτw(tn). (1)

Fig. 1. The fission potential V (q) for Na++
18 → Na+

9 + Na+
9 .

Indicated are the ground-state (qgs), saddle-point (qsd), and
scission-point (qsc) positions, and the fission barrier height Bf .
The total energy is decomposed into the potential, kinetic, and
excitation energy, Etot = V (q) + Ekin + E∗.

Here τ is the time step used in the numerical simulations;
in the case of clusters τ = 3× 10−15 s is used. Consistent
with a previous publication [15] we restrict ourselves to the
quadrupole mode of the hydrodynamical model, see e.g.

[18], i.e. we use for the inertia M =
3

10
M0R

2
0, where M0

is the mass of the cluster, and for the viscosity coefficient
η = 4πR3

0µ, where R0 is the radius of the cluster and µ
the viscosity coefficient of the bulk. T is the temperature.
The quantity w(tn) is a Gaussian random variable with
mean value zero and, assuming Markovian friction, a δ-
correlated variance

〈w(tn)〉 = 0

〈w(tn)w(tn′)〉 = 2δnn′ . (2)

In the overdamped case the relative motion is very slow
due to a strong friction. One obtains the relevant equation
for this case by dividing the second of equations (1) by the
friction coefficient η, neglecting the term (pn+1 − pn)/η,
and solving for qn+1 − qn, introducing the reduced fric-
tion coefficient β = η/M (this is common practice in the
nuclear physics literature)

qn+1 = qn −

(
1

βM

dV (q)

dq

)
n

τ +

√(
T

βM

)
n

τw(tn). (3)

This equation corresponds to the Smoluchowski equation
when tranformed into a partial differential equation. Note
that in the overdamped limit the equation does not depend
on the inertia parameter, as this drops out because β =
η/M . This means that, if the overdamped limit turns out
to be a good approximation (and this will be the case
for the fission of clusters), the inertia parameter is of no
importance.

A time-dependent fission rate will then be calculated
by sampling the number of trajectories Ni which have
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fissioned in the time bin i

R(t) =
1

Ntot −Nf (t)

dNf (t)

dt

→ Ri =
1

Ntot −
∑i
j=1 Nj

Ni

∆t
· (4)

Here Ntot are the total number of trajetories, Nf(t) are
the number of trajectories that have fissioned at the time
t, and ∆t is the width of the time bin.

In the limit of large times the Langevin calculations
should approach the quasi-stationary limit of Kramers [12]
if the latter is a good approximation. This requires that
the behaviour of the system is solely characterized by its
properties at the ground state and saddle, because the
Kramers rate formulas express this feature.

The Kramers decay rate reads [12]

RKram =
~ωgs
2π~

ωK

ωsd
exp

(
−
Bf

kBT

)
. (5)

Here ωK is the Kramers frequency, ωK =
√

(ω2
sd + β2/4)−

β/2, and ωsd =
√

(V ′′sd/Msd) and ωgs =
√

(V ′′gs/Mgs) are

the frequencies at the saddle and at the minimum of the
fission potential given in terms of the curvatures V ′′sd(gs)

and inertias Msd(gs) at the corresponding positions.
In the overdamped case (β/(2ωsd)) � 1 the Kramers

rate reduces to

RoKram =
~ωgs
2π~

ωsd

β
exp

(
−
Bf

kBT

)
, (6)

which is obtained by expanding the square root in ωK .
For comparison we give also the Bohr-Wheeler decay

rate [11] which, using the Einstein level density of a cluster
of size n, has the form [15]

RBWn =
1

2π~ρn(E)

∫ E−Bf

0

dερ(E −Bf − ε)

=
kBT

2π~

(
1−

Bf

(3n− 6)kBT

)3n−6

. (7)

For large clusters ((3n− 6) → ∞) this formula goes over
into the more familiar (for nuclei) expression

RBWn→∞ =
kBT

2π~
exp

(
−
Bf

kBT

)
, (8)

where we have used limm→∞(1− x/m)m = exp(−x).
In the case without friction often the Arrhenius de-

cay rate is applied, with the “attempt frequency” ωgs as
prefactor

RArrh =
~ωgs
2π~

exp

(
−
Bf

kBT

)
. (9)

In nuclear fission sometimes also the Kramers modified
Bohr-Wheeler expression

RKBW = RBWn
ωK

ωsd

~ωgs
kBT

(10)

is used [19], in order to correct approximately for viscosity
effects. This reads in the overdamped limit

RoKBW = RBWn
ωsd

β

~ωgs
kBT

· (11)

These analytical expressions have been used in reference
[15] in order to estimate the reduction of the fission rate
of clusters due to viscosity effects.

In the present paper we compare the Langevin results
also with a rate formula [20] which is valid in the over-
damped case and is more accurate than Kramers limit.
An approximation to this rate formula was applied exten-
sively in nuclear fission [2] in cases where the Kramers
limit is not a good approximation (e.g. for nuclei where
the scission point is not far away from the saddle point).
The exact formula is derived from a mean first passage
time (MFPT) approach [20] and reads

RMFPT =
kBT

βM

(∫ qsc

qgs

dxeV (x)/kBT

×

∫ x

qref

dye−V (y)/kBT

)−1

. (12)

This formula is based on the assumption that the inverse
of a mean first passage time can be interpreted as a rate
for the decay process. It should be more accurate than
the limit of Kramers because it integrates over the whole
range of the potential, whereas in the limit of Kramers
only quadratic expansions of the potential at the ground
state and saddle point enter. An approximation to equa-
tion (12) was used in reference [2] and is obtained by
making expansions up to quadratic order in the inner inte-
gral around the ground-state position qgs and in the outer
integral around the saddle-point position and extending
the lower limit of the inner integration to minus infinity
(qref → −∞), the upper limit to infinity (x → ∞), and
setting in the outer integral qgs → −∞. This results in

RMFPT
appr =

ωgsωsd

2πβ
exp

(
−
Bf

kBT

)
×

2

1 + erf[(qsc − qsd)
√

(V ′′sd/(2kBT ))]
, (13)

where erf(x) = (2/
√
π)
∫ x

0 dt exp(−t2) is the error func-
tion. In this formula the influence of the scission point
position qsc enters, which does not appear in the Kramers
formula. If the scission point is far away from the saddle
point the error function goes to unity and one recovers
Kramers result. If the scission point coincides with the
saddle point the error function is zero, which leads to an
enhancement by a factor of two as compared to the situ-
ation where the scission point is far away from the saddle
point. Below we will show how the position of the scission
point influences the decay rate.
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Fig. 2. The experimental [16] bulk viscosity µ[10−2 poise] and
the reduced friction parameter β[1013 s−1] for Na++

18 are plotted
as functions of the temperature.

Fig. 3. The kinetic energy of a Langevin trajectory, which
starts at the ground-state position, moves over the saddle, and
leaves the potential at the scission point, is plotted on top of
the potential V (q).

3 Calculated fission rates

In the following we first present results of calcula-
tions for the fission decay rates obtained from the full
Langevin equations, equation (1), and with the over-
damped Langevin equation, equation (3), for the pro-
cess Na2+

18 → Na+
9 + Na+

9 at the temperatures 1073 K,
773 K, and 673 K. As viscosity coefficient we use the
measured bulk value µ(T ) of liquid Na [16], because vis-
cosity coefficients for finite systems are not available. In
Figure 2 we plot the temperature dependence of µ(T )
and of the reduced friction parameter β(T ) = η/M =

4πR
1/3
0 µ(T )/(3/10M0) for Na2+

18 .

In Figure 3 we show as an example a particular
Langevin trajectory which starts at the minimum of the
potential qgs with a momentum sampled from a thermal
distribution. Plotted is the kinetic energy plus the po-
tential V (q). The trajectory moves over the maximum of
the potential at the position qsd, and ends at the scission

point qsc. As potential we use a smooth curve fitted to the
potential shown in Figure 2 of reference [14].

On the left-hand side of Figure 4 we display histograms
of the time-dependent fission rates for T = 1073 K, 773 K,
673 K for the full Langevin equations, equation (1). After
a delay time td (which increases slightly with decreasing
temperature) the decay rates approach a stationary limit,
i.e. they do not change with time any more. For large times
these rates should approach the quasi-stationary limit of
Kramers, equation (5), if the latter is a good approxima-
tion. The extent to which this is the case can be read
off from the figure in which we have entered the result
of the Kramers formula. For comparison we also display
the overdamped quasi-stationary Kramers result, equation
(6), which in the considered cases is not much larger than
the full Kramers result.

On the right-hand side of Figure 4 we plot the
Langevin rates for the overdamped situation, using equa-
tion (3). Comparing with the full Langevin rates one ob-
serves that the overdamped Langevin rates are larger than
the full Langevin rates by about the same amount as
the corresponding quasistationary Kramers limits. We also
compare with the rate of the mean first passage time ap-
proach, equation (12), which can be derived in closed form
only in the overdamped limit. It is closer to the over-
damped Langevin approach (exact within the statistical
errors) than the overdamped Kramers limit. This is due
to the fact that it is expected to be more accurate than the
limit of Kramers because integrations in equation (12) are
performed over the whole range of the potential, whereas
the Kramers limit uses only quadratic expansions of the
potential around the ground state and saddle point posi-
tions.

One learns from the figures that the fission of clusters
follows very closely an overdamped motion; the rates of
the overdamped limit are less than 10% larger than those
of the full calculations. The calculations also show that
if one is only interested in the fission rates the Kramers
limit is a good approximation, and it is not necessary to
perform time-consuming Langevin calculations (in partic-
ular at low temperatures when only a small fraction of the
trajectories undergoes fission so that one has to run many
trajectories in order to obtain a reasonable statistics).

The precise values for the fission rates as functions of
the temperature obtained with the various approximate
analytical formulas, equations (5) to (13), can be read
from Table 1. These rates are also plotted in Figure 5.

It is interesting to make a comparison of Kramers
result with the MFPT approach for cases where the scis-
sion point is moved closer to the saddle point (this oc-
curs in the case of lighter fissioning nuclei but not for
the cluster example discussed above). The corresponding
results, which show the influence of the position of the
scission point on the rate, are shown in Figure 6. One
observes that if the scission point is equal to the saddle
point qsc = qsd the rate calculated with the mean first
passage time approach is twice the overdamped Kramers
rate (RMFPT

appr /RoKram = 2), whereas RoKram approaches

RMFPT
appr for qsc � qsd.
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Fig. 4. Left-hand side: The time-dependent fission rates (histograms) calculated with the full Langevin equations are plotted
as function of time for the temperatures T = 1073 K, 773 K, 673 K. Ntot is the total number and Nfiss the number of fissioning
trajectories. For comparison the quasi-stationary Kramers rate RKram and the overdamped Kramers rate RoKram are shown.
Right-hand side: The same for the overdamped Langevin equation. A comparison is made with the overdamped Kramers rate
RoKram and the rate of the mean first passage time approach RMFPT .
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Table 1. Tabulated are the following fission rates as functions of the temperature.

T [◦ K] R(BW) R(BW,inf) R(KBW) R(oKBW) R(Kram) R(oKram) R(Arrh) R(aMFPT) R(MFPT)

371 1.83×104 6.67×105 1.87×102 1.88×102 6.81×103 6.86×103 8.32×104 6.86×103 7.25×103

473 3.57×106 2.84×107 4.35×104 4.42×104 3.45×105 3.51×105 2.78×106 3.51×105 3.64×105

573 8.19×107 3.19×108 1.08×106 1.11×106 4.19×106 4.30×106 2.57×107 4.30×106 4.38×106

673 6.86×108 1.79×109 9.27×106 9.65×106 2.42×107 2.52×107 1.23×108 2.52×107 2.52×107

773 3.21×109 6.56×109 4.34×107 4.58×107 8.86×107 9.34×107 3.93×108 9.34×107 9.20×107

873 1.04×1010 1.81×1010 1.39×108 1.48×108 2.41×108 2.57×108 9.60×108 2.57×108 2.50×108

973 2.65×1010 4.11×1010 3.43×108 3.71×108 5.33×108 5.75×108 1.95×109 5.75×108 5.50×108

1073 5.64×1010 8.07×1010 7.08×108 7.73×108 1.01×109 1.11×109 3.48×109 1.11×109 1.04×109

1173 1.06×1011 1.43×1011 1.29×109 1.42×109 1.73×109 1.91×109 5.62×109 1.92×109 1.78×109

R(BW,inf): Bohr-Wheeler rate for large systems, equation (8). R(BW): Bohr-Wheeler rate for n = 18, equation (7). R(Arrh): Arrhenius rate,

equation (9). R(Kram): Kramers rate, equation (5). R(oKram): overdamped Kramers rate, equation (6). R(aMFPT): approximate mean first

passage time rate, equation (13). R(KBW): Kramers modified Bohr-Wheeler rate, equation (10). R(oKWB): overdamped Kramers modified Bohr-

Wheeler rate, equation (11). R(MFPT): exact mean first passage time rate, equation (12).

The saddle-point and ground-state frequencies are slightly different from those used in reference [15]: ωsd = 1.86× 1012 s−1, ωgs = 6.06×1012 s−1.

Fig. 5. Compared are quasi-stationary fission rates calculated
with different expressions explained in the text: R(BW): Bohr-
Wheeler rate for n = 18, equation (7); R(Arrh): Arrhenius rate,
equation (9); R(Kram): Kramers rate, equation (5); R(oKram):
overdamped Kramers rate, equation (6); R(KWB): Kramers
modified Bohr-Wheeler rate, equation (10); R(MFPT): exact
mean first passage time rate, equation (12).

4 Competing evaporation channels

In order to compare the fission decay with the compet-
ing evaporation channels: Na++

18 → Na++
17 +Na1, Na++

18 →
Na+

17 + Na+
1 , and Na++

18 → Na++
15 + Na+

3 , we have cal-
culated the corresponding decay rates with the evapora-
tion model explained and applied in references [5,8]. This
comparison is made in Figure 7. Without taking viscosity
into account the fission channel is predicted to be dom-
inant; this is shown by the Bohr-Wheeler rate (R(BW),
equation (7), solid triangles up). Taking viscosity into ac-
count by e.g. using the Kramers modified Bohr-Wheeler
rate (R(KBW), equation (10), solid squares) the fission
rate is suppressed by two orders of magnitude. For not
too high temperature the weakest evaporation channel is
the emission of a neutral monomer (Na1, open circles),

Fig. 6. The fission potential V (q) as function of the distance
between the centers of mass of the fission fragments. The in-
set shows the ratio of the fission rates RMFPT

appr /RoKram as
function of the scission point position qsc; the latter is cho-
sen at different positions of the potential V (q) with values on
the abscissa of the outer frame. For qsc = qsd = 21.4 Å one
finds RMFPT

appr /RoKram = 2; for qsc � qsd the rate RoKram

approaches RMFPT
appr , i.e. RMFPT

appr /RoKram = 1.

whereas the Coulomb repulsion enhances the evaporation
of the charged monomer (Na+

1 , open squares). The emis-
sion of a charged trimer is even stronger (Na+

3 , open tri-
angles down). These calculations suggest that the evapo-
ration of a charged trimer should be the dominant pro-
cess in the decay of Na++

18 if the probability of fission is
reduced by the action of viscosity. The reason that the
fission channel, even after including the viscosity, remains
dominant over the monomer emission channel is connected
with the fact that in the present case (decay of Na++

18 ) the
shell structure (magic numbers of the fission fragments) is
particularly pronounced. With less pronounced shell ef-
fects the driving potential for the asymmetry degree of
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Fig. 7. Na++
18 → Na+

9 + Na+
9 neglecting viscosity (R(BW),

equation (7), solid triangles up), and with taking viscosity into
account (R(KBW), equation (10), solid squares). For compar-
ison evaporation rates for the processes: Na++

18 → Na+
15 + Na+

3

(open triangles down), Na++
18 → Na+

17 + Na+
1 (open squares),

and Na++
18 → Na++

17 + Na1 (open circles) are shown.

freedom prefers the emission of monomers over a symmet-
ric fragmentation, as e.g. discussed in references [4,5].

5 Conclusions

The Langevin calculations confirm on a dynamical level
the result of reference [15], namely that if viscosity plays
a role in cluster fission, the fission decay rates of alkali
clusters (more precisely for Na2+

18 ) are suppressed by two
orders of magnitude as compared to the case without
dissipation. This predicts an effect which is an order of
magnitude larger than the corresponding experimentally
observed effect in nuclear fission. It would have the con-
sequence that in an experiment on the decay of Na2+

18 the
emission of Na+

3 should be dominant over symmetric fis-
sion, even if the corresponding barriers are of comparable
height. It is confirmed that if the bulk viscosity is a rea-
sonable order of magnitude estimate for finite clusters, the
motion in the fission degree of freedom is overdamped to
a good approximation. If one is interested only in fission
rates (and competing channels do not play a role) it is not
necessary to perform Langevin calculations because esti-
mates with the Kramers quasi-stationary rates give results
which deviate less than 10% from the more exact Langevin
results.

It is necessary to perform dynamical calculations when
dealing with the dynamical coupling of the different decay
modes (fission, evaporation of charged and neutral light
cluster particles, radiation), because the different chan-
nels would influence each other during the decay process.
In particular this is true if the assumptions of a statisti-
cal model are not fulfilled. An alternative would be the
description of cluster fragmentation by molecular dynam-
ics, which not only allows the treatment of all degrees of
freedom explicitly, but treats also the various fragmenta-
tion channels. A representative paper in this connection

is reference [21], and references therein, which also makes
a comparison with theoretical statistical models. A model
for the competing channels was also found to be neces-
sary for the dynamical description of fission of hot nuclei,
where a large variety of data exists [1,2]. Analogous ex-
periments on the decay of hot clusters would be of great
interest. If they are done it would be worthwhile to work
out the corresponding theory in more detail. The develop-
ment hopefully will be faster than in nuclear fission where
a statistical model [11] turned out to be sufficient for forty
years before experiments (concerning pre-scission neutron
multiplicities) in the eighties enforced a detailed dynami-
cal theoretical description (for reviews, see Refs. [1,2]).

We are indebted to P. Jensen and R. Lipperheide for a careful
reading of the manuscript.
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10. P. Fröbrich, Proc. Int. Symp., Similarities and Differences
between Atomic-Nuclei and -Clusters, Tsukuba, Japan,
July 1-4. 1997, edited by Abe, Arai, Lee, Yabana, (The
American Institute of Physics 1-56396-714-6, 1998), p. 139;
Proc. Int. Symp., Atomic Nuclei and Metallic Clusters,
Prague, Czech. Rep., Sept. 1–5, Czech. J. Phys. 48, 799
(1998).

11. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939).

12. H.A. Kramers, Physica 7, 284 (1940).

13. C. Yannouleas, U. Landman, Nato ASI Series E: Applied
Sciences vol. 313, edited by T.P. Martin (Kluwer Academic
Publishers, The Netherlands, 1996), p. 121.

14. B. Montag, P.-G. Reinhard, Phys. Rev. B 52, 16365
(1995), see also P.-G. Reinhard, F. Calvayrac, E. Suraud,
Z. Phys. D 41, 151 (1997).
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